Resolución inmersa de superficies

Hernán Neciosup Puican, Percy Fernández Sánchez, Jorge Mozo Fernández

Resumen


En este artıculo presentamos, de manera esquemática, un método de resolución inmersa de superficies complejas, siguiendo el esquema de [C] y [Gs]. Describimos la resolución inmersa del germen de superficie casi-homogénea , donde  define una curva singular plana sin parte distinguida y , germen de superficie cuspidal. También describimos la topología del divisor excepcional.

 

In this article, we present, schematically, a method of an embedded resolution of complex surfaces, according to the scheme of [C] and [Gs]. We describe an embedded resolution of the surface germen quasi-homogeneous , where  defines a singular curve flat without distinguished part and , cuspidal surface germ. Also we describe the topology of the exceptional divisor.


Texto completo:

PDF

Referencias


[A] S. ABHYANKAR. On ramification of algebraic functions. Amer. J. Math. 77(1955). 575-

[BMN] C. BAN, L. J. MCEWAN & A. NEMETHI. The embedded resolution of f(x,y)+z^2:(C^3,0)→(C,0). Studia Scientiarum Mathematicarum Hungarica 38 (2001), 51-71.

[BPV] BARTH, W., PETERS, C. AND VAN DE VEN, A.Compact Complex Surfaces. SpringerVerlag 1984.

[C] F. CANO. Introducción a la Geometría Analítica Local. Departamento de Ciencias, Sección Matemáticas. Pontificia Universidad Católica del Perú.

[CGO] V. COSART, J. GIRAUD AND U. ORBANZ, Resolution of surfaces singularities. Lecture Notes in Mathematics, 1101, Springer-Verlag, Berlin-New York, 1984. MR 87e:14032.

[F] R. FRIEDMAN. Algebraic surfaces and holomorphic vector bundles. Springer Verlag 1998.

[Ga] Y.-N. GAU.Embedded topological classification of quasi-ordinary singularities. Men. Amer. Math. Soc. 74 (1988), 109-129

[Gs] G. GONZALES-SPRINBERG, G. (1991). Quelques descriptions de désingularisations plongées de surfaces. Kodai Math. J. 14(2), 1991, 181-193.

[Gk] A. GROTHENDIECK. Sur la classification des fibres holomorphes sur la sphére de Riemann. Aw. J. Math. 79 (1957), 121-138.

[Ha] R. HARTSHORNE. Algebraic Geometry. Graduate text in Mathematic 52. Springer Verlag 1977.

[Hi] H. HIRONAKA.Resolution of singularities of an algebraic variety over a field of characteristic zero I, II. Ann. of Math. (2) 79 (1964), 109-203, 205-326. MR 33 # 7333.

[L1] J. LIPMAN.Quasi-ordinary singularities of embedded surfaces. Ph.D. Thesis, Harvard University, 1965.

[L2] J. LIPMAN.Quasi-ordinary singularities of surfaces in C3. Singularities (Proc. Symp. PureMath. 40), Amer. Math. Soc. Providence 1983, Part 2, 161-171.

[L3] J. LIPMAN.Topological invariants of quasi-ordinary singularities. Mem. Amer. Soc. 74 (1988), 1-107.

[N] Neciosup, H. Clasificación analítica de ciertas foliaciones cuspidales casi-homogéneas en dimensión 3. PhD Thesis, Universidad de Valladolid y Pontificia Universidad Católica del Perú.

[P] A. PICHON. Singularities of complex surfaces with equations z^k+f(x,y)=0. Math. Res. Notices (1997), nº. 5, 241-246.

[S] K. SAITO. Theory of logarithmic differential forms and logarithmic vector fields. J. Fac. Sci. Tokyo 27 (1980), nº. 2, 265.291.

[Z] O. ZARISKI, On the problem of existence of algebraic functions of two variables possesing a given branch curve. Amer. J. Math. 51 (1929), 305-328.


Enlaces refback

  • No hay ningún enlace refback.