Resolución inmersa de superficies
Resumen
En este artıculo presentamos, de manera esquemática, un método de resolución inmersa de superficies complejas, siguiendo el esquema de [C] y [Gs]. Describimos la resolución inmersa del germen de superficie casi-homogénea , donde define una curva singular plana sin parte distinguida y , germen de superficie cuspidal. También describimos la topología del divisor excepcional.
In this article, we present, schematically, a method of an embedded resolution of complex surfaces, according to the scheme of [C] and [Gs]. We describe an embedded resolution of the surface germen quasi-homogeneous , where defines a singular curve flat without distinguished part and , cuspidal surface germ. Also we describe the topology of the exceptional divisor.
Texto completo:
PDFReferencias
[A] S. ABHYANKAR. On ramification of algebraic functions. Amer. J. Math. 77(1955). 575-
[BMN] C. BAN, L. J. MCEWAN & A. NEMETHI. The embedded resolution of f(x,y)+z^2:(C^3,0)→(C,0). Studia Scientiarum Mathematicarum Hungarica 38 (2001), 51-71.
[BPV] BARTH, W., PETERS, C. AND VAN DE VEN, A.Compact Complex Surfaces. SpringerVerlag 1984.
[C] F. CANO. Introducción a la Geometría Analítica Local. Departamento de Ciencias, Sección Matemáticas. Pontificia Universidad Católica del Perú.
[CGO] V. COSART, J. GIRAUD AND U. ORBANZ, Resolution of surfaces singularities. Lecture Notes in Mathematics, 1101, Springer-Verlag, Berlin-New York, 1984. MR 87e:14032.
[F] R. FRIEDMAN. Algebraic surfaces and holomorphic vector bundles. Springer Verlag 1998.
[Ga] Y.-N. GAU.Embedded topological classification of quasi-ordinary singularities. Men. Amer. Math. Soc. 74 (1988), 109-129
[Gs] G. GONZALES-SPRINBERG, G. (1991). Quelques descriptions de désingularisations plongées de surfaces. Kodai Math. J. 14(2), 1991, 181-193.
[Gk] A. GROTHENDIECK. Sur la classification des fibres holomorphes sur la sphére de Riemann. Aw. J. Math. 79 (1957), 121-138.
[Ha] R. HARTSHORNE. Algebraic Geometry. Graduate text in Mathematic 52. Springer Verlag 1977.
[Hi] H. HIRONAKA.Resolution of singularities of an algebraic variety over a field of characteristic zero I, II. Ann. of Math. (2) 79 (1964), 109-203, 205-326. MR 33 # 7333.
[L1] J. LIPMAN.Quasi-ordinary singularities of embedded surfaces. Ph.D. Thesis, Harvard University, 1965.
[L2] J. LIPMAN.Quasi-ordinary singularities of surfaces in C3. Singularities (Proc. Symp. PureMath. 40), Amer. Math. Soc. Providence 1983, Part 2, 161-171.
[L3] J. LIPMAN.Topological invariants of quasi-ordinary singularities. Mem. Amer. Soc. 74 (1988), 1-107.
[N] Neciosup, H. Clasificación analítica de ciertas foliaciones cuspidales casi-homogéneas en dimensión 3. PhD Thesis, Universidad de Valladolid y Pontificia Universidad Católica del Perú.
[P] A. PICHON. Singularities of complex surfaces with equations z^k+f(x,y)=0. Math. Res. Notices (1997), nº. 5, 241-246.
[S] K. SAITO. Theory of logarithmic differential forms and logarithmic vector fields. J. Fac. Sci. Tokyo 27 (1980), nº. 2, 265.291.
[Z] O. ZARISKI, On the problem of existence of algebraic functions of two variables possesing a given branch curve. Amer. J. Math. 51 (1929), 305-328.
Enlaces refback
- No hay ningún enlace refback.